Pure Mathematics 2

Exercise 1E

$1 \quad n^{2}-n=n(n-1)$
If n is even, $n-1$ is odd and even \times odd $=$ even If n is odd, $n-1$ is even and odd \times even $=$ even
So $n^{2}-n$ is even for all values of n.
$2 \quad$ LHS $=\frac{x}{(1+\sqrt{2})} \times \frac{(1-\sqrt{2})}{(1-\sqrt{2})}$
$=\frac{x(1-\sqrt{2})}{(1-2)}$
$=\frac{x-x \sqrt{2}}{-1}$
$=x \sqrt{2}-x$
$=$ RHS
So $\frac{x}{(1+\sqrt{2})} \equiv x \sqrt{2}-x$
$3 \quad \mathrm{LHS}=(x+\sqrt{y})(x-\sqrt{y})$
$=x^{2}-x \sqrt{y}+x \sqrt{y}-y$
$=x^{2}-y$
$=$ RHS
So $(x+\sqrt{y})(x-\sqrt{y}) \equiv x^{2}-y$

4

$$
\begin{aligned}
\text { LHS } & =(2 x-1)(x+6)(x-5) \\
& =(2 x-1)\left(x^{2}+x-30\right) \\
& =2 x^{3}+x^{2}-61 x+30 \\
& =\text { RHS }
\end{aligned}
$$

So $(2 x-1)(x+6)(x-5) \equiv$ $2 x^{3}+x^{2}-61 x+30$

5 Completing the square:
$x^{2}+b x=\left(x+\frac{b}{2}\right)^{2}-\left(\frac{b}{2}\right)^{2}$
So $x^{2}+b x \equiv\left(x+\frac{b}{2}\right)^{2}-\left(\frac{b}{2}\right)^{2}$
$6 \quad x^{2}+2 b x+c=0$
Completing the square:
$(x+b)^{2}-b^{2}+c=0$

$$
\begin{aligned}
(x+b)^{2} & =b^{2}-c \\
x+b & = \pm \sqrt{b^{2}-c}
\end{aligned}
$$

$6 \quad x=-b \pm \sqrt{b^{2}-c}$
So the solutions of $x^{2}+2 b x+c=0$ are $x=-b \pm \sqrt{b^{2}-c}$.
$7 \quad$ LHS $=\left(x-\frac{2}{x}\right)^{3}$

$$
\begin{aligned}
& =\left(x-\frac{2}{x}\right)\left(x^{2}-4+\frac{4}{x^{2}}\right) \\
& =x^{3}-6 x+\frac{12}{x}-\frac{8}{x^{3}} \\
& =\text { RHS }
\end{aligned}
$$

So $\left(x-\frac{2}{x}\right)^{3} \equiv x^{3}-6 x+\frac{12}{x}-\frac{8}{x^{3}}$
$8 \quad$ LHS $=\left(x^{3}-\frac{1}{x}\right)\left(x^{\frac{3}{2}}+x^{-\frac{5}{2}}\right)$

$$
=x^{\frac{9}{2}}+x^{\frac{1}{2}}-x^{\frac{1}{2}}-x^{-\frac{7}{2}}
$$

$$
=x^{\frac{9}{2}}-x^{-\frac{7}{2}}
$$

$$
=x^{\frac{1}{2}}\left(x^{4}-\frac{1}{x^{4}}\right)
$$

$$
=\mathrm{RHS}
$$

So $\left(x^{3}-\frac{1}{x}\right)\left(x^{\frac{3}{2}}+x^{-\frac{5}{2}}\right) \equiv x^{\frac{1}{2}}\left(x^{4}-\frac{1}{x^{4}}\right)$
$9 \quad 3 n^{2}-4 n+10=3\left(n^{2}-\frac{4}{3} n+\frac{10}{3}\right)$
$=3\left(\left(n-\frac{2}{3}\right)^{2}-\frac{4}{9}+\frac{10}{3}\right)$

$$
=3\left(n-\frac{2}{3}\right)^{2}+\frac{26}{3}
$$

The minimum value is $\frac{26}{3}$ so $3 n^{2}-4 n+10$ is always positive.

10

$$
\begin{aligned}
-n^{2}-2 n-3 & =-\left(n^{2}+2 n+3\right) \\
& =-\left((n+1)^{2}-1+3\right) \\
& =-(n+1)^{2}-2
\end{aligned}
$$

The maximum value is -2 , so $-n^{2}-2 n-3$ is always negative.

Pure Mathematics 2

$11 x^{2}+8 x+20$
Complete the square
$(x+4)^{2}-16+20=(x+4)^{2}+4$
The minimum value of $(x+4)^{2}+4$ is 4
So $(x+4)^{2}+4 \geq 4$
Therefore, $x^{2}+8 x+20 \geq 4$
$12 k x^{2}+5 k x+3=0$ has no real roots,
so $b^{2}-4 a c<0$
$(5 k)^{2}-4 k(3)<0$
$25 k^{2}-12 k<0$
$k(25 k-12)<0$
$0<k<\frac{12}{25}$
When $k=0$:
(0) $x^{2}+5(0) x+3=0$

$$
3=0
$$

which is impossible, so no real roots.
So combining these:
$0 \leq k<\frac{12}{25}$
$13 p x^{2}-5 x-6=0$ has two distinct real roots, so
$b^{2}-4 a c>0$
$25+24 p>0$

$$
p>-\frac{25}{24}
$$

$14 \quad A(1,2), B(1,2)$ and $C(2,4)$
The gradient of line $A B=\frac{2-1}{1-3}=-\frac{1}{2}$
The gradient of line $B C=\frac{4-2}{2-1}=2$
The gradient of line $A C=\frac{4-1}{2-3}=-3$
The gradients are different so the three points are not collinear.
Hence $A B C$ is a triangle.
Gradient of $A B \times$ gradient of $B C$
$=-\frac{1}{2} \times 2$
$=-1$
So $A B$ is perpendicular to $B C$, and the triangle is a right-angled triangle.
$15 \quad A(1,1), B(2,4), C(6,5)$ and $D(5,2)$
The gradient of line $A B=\frac{4-1}{2-1}=3$
The gradient of line $B C=\frac{5-4}{6-2}=\frac{1}{4}$
The gradient of line $C D=\frac{2-5}{5-6}=3$
The gradient of line $A D=\frac{2-1}{5-1}=\frac{1}{4}$
Gradient of $A B=$ gradient of $C D$, so $A B$ and $C D$ are parallel.
Gradient of $B C=$ gradient of $A D$, so $B C$ and $A D$ are parallel.

So $A B C D$ can be a parallelogram or a rectangle and we need to check further. Since there is not a pair of gradients which multiply to give -1 there is no right angle. Hence $A B C D$ is a parallelogram.

16
$A(2,1), B(5,2), C(4,-1)$ and $D(1,-2)$
The gradient of line $A B=\frac{2-1}{5-2}=\frac{1}{3}$
The gradient of line $B C=\frac{-1-2}{4-5}=3$
The gradient of line $C D=\frac{-2+1}{1-4}=\frac{1}{3}$
The gradient of line $A D=\frac{-2-1}{1-2}=3$
Gradient of $A B=$ gradient of $C D$, so $A B$ and $C D$ are parallel.
Gradient of $B C=$ gradient of $A D$, so $B C$ and $A D$ are parallel.

Distance $A B=\sqrt{(5-2)^{2}+(2-1)^{2}}$

$$
=\sqrt{10}
$$

Distance $B C=\sqrt{(4-5)^{2}+(-1-2)^{2}}$

$$
=\sqrt{10}
$$

$$
\text { Distance } \begin{aligned}
C D & =\sqrt{(1-4)^{2}+(-2+1)^{2}} \\
& =\sqrt{10}
\end{aligned}
$$

Distance $A D=\sqrt{(1-2)^{2}+(-2-1)^{2}}$

$$
=\sqrt{10}
$$

All four sides are equal. Since no pairs of gradients multiply to give -1 there are no right angles at a vertex so this is not a square. Hence $A B C D$ is a rhombus.
$17 \quad A(-5,2), B(-3,-4)$ and $C(3,-2)$
The gradient of line $A B=\frac{-4-2}{-3+5}=-3$
The gradient of line $B C=\frac{-2+4}{3+3}=\frac{1}{3}$
The gradient of line $A C=\frac{-2-2}{3+5}=-\frac{1}{2}$
The gradients are different so the three points are not collinear. Hence $A B C$ is a triangle.

Gradient of $A B \times$ gradient of $B C$
$=-3 \times \frac{1}{3}$
$=-1$
So $A B$ is perpendicular to $B C$.
Distance $A B=\sqrt{(-3+5)^{2}+(-4-2)^{2}}$

$$
=\sqrt{40}
$$

Distance $B C=\sqrt{(3+3)^{2}+(-2+4)^{2}}$

$$
=\sqrt{40}
$$

$A B=B C$
As two sides are equal and an angle is rightangled, $A B C$ is an isosceles right-angled triangle.

18 Substituting $y=a x$ into $(x-1)^{2}+y^{2}=k$:

$$
\begin{array}{r}
(x-1)^{2}+a^{2} x^{2}=k \\
x^{2}-2 x+1+a^{2} x^{2}-k=0 \\
x^{2}\left(1+a^{2}\right)-2 x+1-k=0
\end{array}
$$

The straight line cuts the circle at two distinct points, so this equation has two distinct real roots, so

$$
\begin{aligned}
b^{2}-4 a c & >0 \\
(-2)^{2}-4\left(1+a^{2}\right)(1-k) & >0 \\
4-4\left(1-k+a^{2}-k a^{2}\right) & >0 \\
4 k-4 a^{2}+4 k a^{2} & >0 \\
-a^{2}+k+k a^{2} & >0 \\
-a^{2}+k\left(1+a^{2}\right) & >0 \\
k & >\frac{a^{2}}{1+a^{2}}
\end{aligned}
$$

$19 \quad 4 y-3 x+26=0$

$$
\begin{aligned}
4 y & =3 x-26 \\
y & =\frac{3}{4} x-\frac{13}{2}
\end{aligned}
$$

Substituting $y=\frac{3}{4} x-\frac{13}{2}$ into

$$
\begin{aligned}
&(x+4)^{2}+(y-3)^{2}=100: \\
&(x+4)^{2}+\left(\frac{3}{4} x-\frac{19}{2}\right)^{2}=100 \\
& x^{2}+8 x+16+\frac{9}{16} x^{2}-\frac{57}{4} x+\frac{361}{4}-100=0 \\
& 16 x^{2}+128 x+256+9 x^{2}-228 x \\
&+1444-1600=0 \\
& 25 x^{2}-100 x+100=0 \\
& x^{2}-4 x+4=0 \\
&(x-2)^{2}=0 \\
& x=2
\end{aligned}
$$

There is only one solution so the line $4 y-3 x+26=0$ only touches the circle in one place, so it is a tangent to the circle.

20 Area of square $=(a+b)^{2}=a^{2}+2 a b+b^{2}$
Shaded area $=4\left(\frac{1}{2} a b\right)=2 a b$
Area of smaller square
$=a^{2}+2 a b+b^{2}-2 a b$
$=a^{2}+b^{2}$
$=c^{2}$

Challenge

1 Find the equations of the perpendicular bisectors to the chords $A B$ and $B C$:
$A(7,8)$ and $B(-1,8)$
Midpoint $=\left(\frac{7-1}{2}, \frac{8+8}{2}\right)=(3,8)$
The gradient of the line segment $A B$
$=\frac{8-8}{-1-7}$
$=0$
So the line perpendicular to $A B$ is a vertical line $x=3$.
$B(-1,8)$ and $C(6,1)$

$$
\begin{aligned}
\text { Midpoint } & =\left(\frac{-1+6}{2}, \frac{8+1}{2}\right) \\
& =\left(\frac{5}{2}, \frac{9}{2}\right)
\end{aligned}
$$

The gradient of the line segment $B C$
$=\frac{1-8}{6+1}$
$=-1$
So the gradient of the line perpendicular to $B C$ is 1 .

The equation of the perpendicular line is
$y-y_{1}=m\left(x-x_{1}\right)$
$m=1$ and $\left(x_{1}, y_{1}\right)=\left(\frac{5}{2}, \frac{9}{2}\right)$
So $\begin{aligned} y-\frac{9}{2} & =x-\frac{5}{2} \\ y & =x+2\end{aligned}$
$A B$ and $B C$ intersect at the centre of the circle, so solving $x=3$ and $y=x+2$ simultaneously:
$x=3, y=5$
Centre of the circle, X, is $(3,5)$.

$$
\text { Distance } \begin{aligned}
A X & =\sqrt{(7-3)^{2}+(8-5)^{2}} \\
& =\sqrt{25} \\
& =5
\end{aligned}
$$

Distance $B X=\sqrt{(-1-3)^{2}+(8-5)^{2}}$
$=\sqrt{25}$
$=5$
Distance $C X=\sqrt{(6-3)^{2}+(1-5)^{2}}$

$$
=\sqrt{25}
$$

$$
=5
$$

$$
\text { Distance } \begin{aligned}
D X & =\sqrt{(0-3)^{2}+(9-5)^{2}} \\
& =\sqrt{25} \\
& =5
\end{aligned}
$$

The distance from the centre of the circle to all four points is 5 units, so all four points lie on a circle with centre $(3,5)$.

Pure Mathematics 2

Challenge

$23=2^{2}-1^{2}$
$5=3^{2}-2^{2}$
$7=4^{2}-3^{2}$
$11=6^{2}-5^{2}$
Let p be a prime number greater than 2 .
$\left(\frac{1}{2}(p+1)\right)^{2}-\left(\frac{1}{2}(p-1)\right)^{2}$
$=\frac{1}{4}\left((p+1)^{2}-(p-1)^{2}\right)$
$=\frac{1}{4}(4 p)$
$=p$
So any odd prime number can be written as the difference of two squares.

